Analytical results for the multi-objective design of model-predictive control
نویسندگان
چکیده
In model-predictive control (MPC), achieving the best closed-loop performance under a given computational capacity is the underlying design consideration. This paper analyzes the MPC tuning problem with control performance and required computational capacity as competing design objectives. The proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat control performance and the computational capacity separately – often with the latter as a fixed constraint – which requires the implementation hardware to be known a priori. The proposed approach focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon length, to produce a set of optimal choices available to the practitioner. The posed design problem is then analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds, and establish certain validated guarantees. Founded on these properties, necessary and sufficient conditions for an effective and efficient optimizer are presented, leading to a specialized multi-objective optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to illustrate the results of the tuning approach and importance of the developed conditions for an effective optimizer of the MOD-MPC problem. & 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
Adaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملOptimal design of a vibration absorber for tremor control of arm in Parkinson's disease
Because the underlying physiology of pathological tremor in a Parkinson's patient is not well understood, the existing physical and drug therapies have not been successful in tremor treatment. Different mathematical modeling of such vibration has been introduced to investigate the problem and reduce the existing vibration. Most of the models have represented the induced vibration as a sinusoida...
متن کاملMulti-objective Economic-statistical Design of Cumulative Count of Conforming Control Chart
Cumulative Count of Conforming (CCC) charts are utilized for monitoring the quality characteristics in high-quality processes. Executive cost of control charts is a motivation for researchers to design them with the lowest cost. Usually in most researches, only one objective named cost function is minimized subject to statistical constraints, which is not effective method for economic-statistic...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملMulti-objective Efficient Design of np Control Chart Using Data Envelopment Analysis
Control charts are the most important tools of statistical process control used to discriminate between assignable and common causes of variation and to improve the quality of a process. To design a control chart, three parameters including sample size, sampling interval, and control limits should be determined. The objectives are hourly expected cost, in-control average run length, power of th...
متن کامل